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Abstract—Time-domain reflectometry (TDR) is one of the
standard methods for diagnosing faults in electrical wiring
and interconnect systems, with a long-standing history focused
mainly on hardware development of both high-fidelity systems
for laboratory use and portable hand-held devices for field
deployment. While these devices can easily assess distanceto
hard faults such as sustained opens or shorts, their abilityto
assess subtle but important degradation such as chafing remains
an open question. This paper presents a unified framework for
TDR-based chafing fault detection in lossy coaxial cables by
combining an S-parameter based forward modeling approach
with a probabilistic (Bayesian) inference algorithm. Results
are presented for the estimation of nominal and faulty cable
parameters from laboratory data.

Index Terms—Bayesian, fault detection,S-parameters, time-
domain reflectometry (TDR), wiring.

I. I NTRODUCTION

T HE Federal Aviation Administration (FAA), Naval Sys-
tems Air Command (NAVAIR) and National Aeronautics

and Space Administration (NASA) have all identified wire
chafing as the largest factor contributing to electrical wiring
and interconnect system failures in aging aircraft [1]. Further-
more, the detection of wire chafing is important because it
leads to more significant problems such as opens and shorts.
This article provides a technically extended discussion of
results initially published in [2] on a new general method for
characterizing wiring chafe detectability using time-domain
reflectometry (TDR). Our approach combines physics-based
modeling of signal propagation through a faulty cable within
a TDR setup, with a probabilistic inference method for re-
covering key system parameters, including fault location and
size, from measured data. The method further provides clear
uncertainty information regarding the estimated parameters,
without relying on linear model approximation techniques.
Finally, it is flexible enough to apply to a variety of wiring
types, measurement conditions, and arbitrary input interroga-
tion signals.

TDR is an industry-standard method for diagnosing faults
in wiring systems. Intuitively, it works by applying an input
signal (e.g., step, Gaussian pulse, pseudo-noise,etc.) to the
wire under test, which propagates as a wave along the line.
When the main wavefront passes over a fault on the line, part
of it is reflected and travels back to the input where it can be
measured. Finally, the measured response is diagnosed, either
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by eye or using automated software, for signal variation caused
by potential faults.

Wiring fault detection using TDR has a long history,
where the detection of chafing is considered significantly
more difficult than hard failures such as opens and shorts
[3]. Over the last decade, many time-domain reflectometry
(TDR), frequency-domain reflectometry (FDR) and time- and
frequency-based investigations were published [3]–[9]. Among
these investigations and many others, the primary mechanism
for automated fault detection is the application of a sliding
correlator, or matched filter, to detect fault location. In ad-
dition, knowledge of the wire material parameters such as
permittivity and conductivity along with measurement setup
and impedance matching conditions are usually either assumed
known in advance, or fixed from baseline measurements.

Unfortunately, correlation methods generally fail to detect
small faults in practice for at least a couple of reasons.
First, when baseline measurements are available, they are
often unreliable because of the continuously changing ca-
ble characteristics and measurement conditions in the field.
Second, matched-filter based techniques only provide relative
information regarding fault severity in terms of the amplitude
of the fault signature, and its location in time. Translating
that information into thephysical fault geometry and its
distance from the source again depends on foreknowledge of
the channel properties. For the wire fault detection problem
however, the channel depends not only on the same changes
in cable characteristics and measurement conditions that affect
the baseline, but also on the location of the fault itself. Even
high-quality cable exhibits loss and dispersion effects that
appreciably change the shape of the propagating signal wave
as a function of the propagation distance. In essence, one does
not reliably know ahead of time the correct matched-filter to
use. Finally, because correlation-based detection methods fail
to accurately account for these effects, they can not be used
to reliably answer basic trade-space analysis questions such as
fault detectability versus distance.

The method presented in this article overcomes the diffi-
culties with traditional approaches highlighted in the previous
paragraph. We begin in section II by developing a framework
based onscattering parameters(or S-parameters) to build
a computationally efficient yet accurate forward model for
how chafed shielding affects signal propagation, and thus the
measured TDR response. This model includes the key physical
parameters contributing to signal loss and dispersion effects
such as dielectric permittivity, finite metallic conductivity, and
source–cable impedance mismatch. In section III, this forward
model is then combined with a general Bayesian probabilistic
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inversion procedure, which enables robust fault parameter
estimation in the presence of measurement noise and initial
model parameter uncertainty (i.e., uncertainty in permittivity,
conductivity, impedance mismatch,etc.). In fact, this method
simultaneously estimates not only fault location and size,
but an entire set of key parameters affecting the measured
TDR response along with the corresponding joint uncertainty
information, which in turn enables a reliable characterization
of trade-space issues. Finally, in section IV, example results
characterizing fault detectability in RG58 coaxial cable are
presented. In summary, our approach combines a physics-
based model with a Bayesian probabilistic inversion method;
and this approach has found success in other TDR applica-
tions, for example see [10], as well as inmanyother fields.

To keep the presentation clear and concrete, our method
is explained in terms of a simple example involving a single
chafing fault in coaxial cable. However, it should be clear
throughout that this example is easily generalized to handle
a wide variety of wire types and fault conditions, simply
by substituting the appropriateS-parameter models for the
particular types of cable and fault under investigation. In
addition, a new effective TDR hardware model is derived that
may be common to many systems.

Finally, before moving on, we admit up front that the
fault parameter retrieval method presented here is not well
suited for practical application in the field, because it is
computationally too expensive and hence slow (at the present
time). However, the method is important because it enables
a general characterization of fault detectability in a wide
variety of wiring systems using virtually any TDR hardware
measurement setup and input interrogation signal. As such,the
approach presented here can be used to establish fundamental
limits on fault detection performance in advance of further
hardware and software development cost.

II. FORWARD MODEL FOR TDR

This section describes our systematic approach to buildinga
computationally efficient forward model for the interrogation
of a chafed coaxial cable using TDR. The modeling method
of choice is theS-parameter formalism; the reader is referred
to [11], [12] for a refresher. Specifically, each cable segment
is treated as a two-port device with a2 × 2 matrix of S-
parameters. TheseS-parameters are then combined in cascade
to obtain the overall response of the system. In this process,
one is aided by the formula

Γ1 = S11 +
S12S21Γ2

1− S22Γ2
, (1)

which relates the reflection coefficients seen looking into
port 1 (Γ1) and out of port 2 (Γ2) of a two-port device within
a network.

A. Coaxial Cable

For nominal (i.e., unfaulted) segments of the cable, one has

S11 = S22 = 0,

S12 = S21 ≡ S0(l),

where the dependence of the relevantS-parameters on the
cable lengthl has been indicated explicitly for later conve-
nience. Adopting the standard textbook model for a coaxial
transmission line (see, for instance, [13], p. 551) one obtains

S0(l) = e−jk(ω)l, (2)

where

k(ω) ≃ ω
√
µ0ǫd +

1

2 ln(b/a)

√

ωǫd
jσc

(

1

a
+

1

b

)

. (3)

In (3), a andb respectively denote the radius of the core and
the (inner) radius of the shield, both of which are assumed to
have a (finite) conductivityσc, while ǫd denotes the permittiv-
ity of the insulator separating the two conductors, andµ0 is
the vacuum permeability. We will also need the characteristic
impedance of the cable, which is given by

Z0 =
ln(b/a)

2π

k(ω)

ωǫd
. (4)

The above formulation relates the key cable parameters (S0

andZ0) directly to the “constitutive” parameters (σc andǫd),
and is therefore preferable to the distributed RLCG parameter
model that is more commonly found in textbook treatments.
Finally, with this model and all that follows it is assumed
that the material resonances of the insulator lie well abovethe
frequency range of interest (say, DC to 10 GHz), and therefore
the permittivity is taken to be a real-valued constant. Thus,
the attenuation and dispersion of signals along the cable are
due solely to the finite conductivity of the core and shield.
One could, of course, employ a suitable complex-valued,
frequency-dependent parametric model for the permittivity,
should the dielectric loss be deemed necessary to include in
the model.

B. Impedance Step

In this section, a model for an impedance step in the system
is derived. Figure 1 illustrates the problem in a generic setting.
The task is to determineΓ1 givenΓ2, Z2, andZ1. First, we
define the reflection coefficient caused by the impedance step
(for waves moving to the right):

Γs =
Z2 − Z1

Z1 + Z2
=

[

V −
1

V +
1

]

V −

2
=0

.

Using a voltage loop, it is easy to see that the transmission
coefficient must then be1+Γs. Combining these two facts, we
can write the following two equations for the voltage waves
entering and exiting the impedance step:

V −
1 = ΓsV

+
1 + (1− Γs)V

−
2 ,

V +
2 = (1 + Γs)V

+
1 − ΓsV

−
2 ,

and from these two equations, the desired result is easily
obtained:

Γ1 =
Γs + Γ2

1 + ΓsΓ2
. (5)
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Fig. 1. Impedance step.

C. Chafe Fault

A simple yet accurate model for theS-parameters of a
chafed coaxial cable is now presented using an approach thatis
generalizable to other types of wiring. The situation of interest
is depicted in Figure 2, where a segment of lengthlF and width
wF is chafed on a coaxial cable with characteristic impedance
Z0. The chafed segment is modeled as having a constant (i.e.,
z- andω-independent) characteristic impedanceZF .

To derive S11 of the chafe, we conceptually match the
coaxial cable impedance on the right, and define

Γ2 =
Z0 − ZF

Z0 + ZF

as the reflection coefficient for a wave traveling into the sec-
ond impedance discontinuity. Any wave transmitted through
this discontinuity will never return because the impedance
is matched. Now, if we movelF meters to the left of the
second impedance discontinuity to a position just after the
first impedance discontinuity the input reflection coefficient
will be

Γ2e
−j2ωtd ,

wheretd is the one-way travel time from the first to the second
discontinuity (i.e., 2td seconds pass as the incident wave
travels this distance, reflects from the second discontinuity,
and travels back). Clearly,td = lF /vp, wherevp is the wave
propagation velocity inside the fault. The only remaining step
is to cross the first impedance discontinuity. To do this, we
use equation (5) from§II-B, whereΓs = −Γ2. Thus,

S11 = Γ1 =
Γ2(e

−j2ωtd − 1)

1− Γ2
2e

−j2ωtd
, (6)

where the first equality follows because the output impedance
is matched.

Next, we derive an approximation forS21 by simply noting
that (1 − Γ2) times the incident voltage wave is transmitted
through the first impedance discontinuity, delayed bytd, and
(1+Γ2) is transmitted through the second discontinuity. Thus,

S21 ≈ (1 − Γ2
2)e

−jωtd . (7)

This is an approximation because there are additional reflec-
tions that ring within the fault.

The exact expression is derived by tracing the voltage waves
as they reflect within the fault, and adding the transmitted parts
of the delayed reflections together in an infinite series. This
procedure produces

S21 =
(1 − Γ2

2)e
−jωtd

1− Γ2
2e

−j2ωtd
. (8)

Note, this exact expression does produce noticeably better
results when the fault magnitudes are also small (and they

lF

ZF Z0Z0

Γ1 Γ2

a

b
c

θ

wF

ǫd

Fig. 2. (Left) A constant-impedance model for a chafed cablesegment.
(Right) Cross-section of a chafed coaxial cable.

usually are). Finally, since this chafe model is symmetric,we
haveS11 = S22, andS21 = S12.

We must next relate the hitherto unknown parametersZF

and vp to the geometry of the chafe’s cross-section shown
in Figure 2. This geometry depends on the conductor radius
a, inside shield radiusb, and outside shield radiusc, which
are considered known for the cable under investigation. The
fault impedanceZF and velocity of propagationvp are both
functions of principally the chafe widthwF and dielectric
permittivity ǫd. These functions are determined numerically
by building lookup tables using a standard finite-difference
method to solve forZF and vp over a grid of different
values for wF and ǫd. The theoretical underpinnings and
the numerical implementation of this approach are presented
in [14].1 We have found that this simple rectangular chafe
geometry and lookup-table based approach are remarkably
accurate for modeling practical chafes, which are typically
elliptical in shape.

D. Source Connection

In this subsection, a simple source connection model is
derived. The situation is presented in Figure 3. Using the
definitions shown on the schematic and a little algebra, it is
easy to show that

V −

VS
=

Z0Γ

Z0(1 + Γ) + ZS(1− Γ)
, (9)

V

VS
=

(

1 + Γ

Γ

)

V −

VS
=

Z0(1 + Γ)

Z0(1 + Γ) + ZS(1− Γ)
. (10)

An important subtlety is that the net voltageV is mea-
sured in the characteristic impedanceZ0, after any possible
impedance mismatch with the source. Since most TDR sys-
tems measure voltage with respect to the source impedance
rather than the line impedance, this important case is treated
in the next section.

E. TDR Hardware

A general model for the TDR hardware is shown in Figure 4.
In this figure, the “down-stream network” represents any
wiring system that is defined by a characteristic impedance
Z0 and a reflection coefficientΓ0 at the system input. The

1The method presented in [14] assumes thatvp is equal to the nominal
velocity of propagation on the cable, which is≃ 1/

√
µ0ǫd. While this isnot

theoretically true, the assumption seems to work reasonably well in practice
for the small chafe faults considered in this paper.
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Fig. 3. Source connection.
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TDR hardware

e−jωtM

down-stream network

Fig. 4. TDR hardware model.

goal is to determine the experimentally measured voltageVM

in terms of the TDR source voltageVS .
Good models for TDR hardware should incorporate three

practical effects: (1) the frequency-dependent impedancemis-
match between the source and the cable, (2) a measurement
delay time needed to account for signal propagationwithin
the TDR unit, and (3) a gain factor to account for a typically
small mis-calibration between the modeled and measured TDR
response voltages. The equation below for the net transfer
function captures these effects:

H(ω) =
VM

VS
=

G

2

(

1 +
ΓS + Γ0

1 + ΓSΓ0
e−j2ωtM

)

, (11)

where ΓS = (Z0 − ZS)/(Z0 + ZS) accounts for the port
impedance mismatch,tM represents the one-way internal
delay, andG is the gain factor used to account for possible
calibration issues. The key parameters for the TDR unit are
thus seen to be the source impedanceZS , the internal delay
tM , and the gain factorG.

Equation (11) is derived by processing the schematic of
Figure 4 from right to left. To start, we need to deal with
the fact thatΓ0 is specified with reference toZ0, while the
TDR voltage measurement is made with respect toZS . In
other words, there is a possible impedance mismatch between
the TDR port and the downstream network. This is easily
accomplished by using the impedance step model presented
earlier withΓS = (Z0−ZS)/(Z0+ZS). The updated reflection
transfer function after the impedance step is then

Γ′
0 =

ΓS + Γ0

1 + ΓSΓ0
. (12)

The next step is to incorporate the delay block, which rep-
resents a time lag between the voltage measurement and the
TDR port. This is also easy to do using the fact that a delay in
time is equivalent to the following in the frequency domain:

ΓM = Γ′
0e

−jω2tM . (13)

V +(ω, 0)

V −(ω, 0)

S0, Z0S0, Z0

ZL

ZL

ΓL
Γ2Γ1Γ0

z = 0+ dF d′
FlF

chafe

S

coaxcoax

TDR

TDR

m

Fig. 5. S-parameter representation of a chafed coaxial cable.

Finally, we need to convertΓM , which specifies the transfer
function between the forward and reverse voltage waves, into
the transfer function between the net source signalVS and the
measured net response signalVM . With respect to Figure 3,
Γ is the reflection coefficient looking into the characteristic
impedanceZ0. Since equation (12) already took care of the
TDR port impedance mismatch,ΓM is looking intoZS , so we
can setZ0 = ZS for this final step in our development of the
TDR hardware model. Thus equation (10) above simplifies to

VM

VS
=

G

2
(1 + ΓM ), (14)

after also multiplying the system gain factorG. Combining
equations (12), (13), and (14) produces the TDR hardware
model given by (11).

F. Model Synthesis

The pieces discussed separately above are now put together
to obtain the system model shown in Figure 5. The model is
analyzed from right to left, starting with the load reflection co-
efficientΓL = (ZL−Z0)/(ZL+Z0). By repeated application
of equation (1), we obtain

Γ2 = S2
0(d

′
F )ΓL, (15)

Γ1 = S11 +
S12S21Γ2

1− S22Γ2
, (16)

Γ0 = S2
0(dF )Γ1, (17)

whereS0(l) is given in (2), andSij are given in (6) and (8).
Inserting these equations into (11), we obtain ananalytical

relationship between the TDR input and output signals, which
explicitly contains the various physical system and fault pa-
rameters discussed above. (The derivation is straightforward,
but the result is too unwieldy to include here.) Rewriting (11)
in the time domain, we have

vM (t) =

∫ t

0

h(t− t′; θ) vS(t
′) dt′, (18)

where the dependence of the impulse responseh on the setθ
of key model parameters has been indicated to motivate the
discussion in§III.

Typically, equation (18) is computed numerically using the
Fast Fourier Transform algorithm. Explicitly, given a set of
time samplestk = k∆t for k = 0, 1, . . . , n − 1 (n odd),
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where∆t is the sampling period, the corresponding continuous
frequencies are given by:

ωk =







2πk
n∆t for k = 0, 1, . . . , (n− 1)/2;

− 2π(n−k)
n∆t for k = (n+ 1)/2, . . . , n− 1.

(19)

Thus, if we assign then-dimensional vectors,

vM = [vM (t0), vM (t1), . . . , vM (tn−1)]
T (20)

vS = [vS(t0), vS(t1), . . . , vS(tn−1)]
T (21)

H(θ) = [H(ω0, θ), H(ω1, θ), . . . , H(ωn−1, θ)]
T , (22)

then,
vM (θ) = ifft(H(θ) ⊙ fft(vS)), (23)

where we have used⊙ to represent an element-by-element
vector multiply operation,H(ω, θ) refers to equation (11)
evaluated at a particular set of model parametersθ, and of
coursefft and ifft represent the Fast Fourier Transform
algorithm and its inverse, respectively. The computation is
valid when the actual source signal isn∆t-periodic and well
approximated by the sum ofn sinusoids with the angular
frequenciesωk given in (19) above.

Finally, we note in passing that this modeling approach
can be generalized readily to a cable with chafes (or other
kinds of faults) at multiple locations, and in fact to arbitrary
wiring networks. Most importantly, as the number of wiring
and interconnect components grows, the computational effort
needed to evaluate the model grows only linearly, and the
memory resources needed stays roughlyfixed.

G. Full S-parameter Model for an Arbitrary Cable with Fault

In the previous subsection, we showed how to derive the
frequency-dependent input reflection coefficient for a coaxial
cable with a chafe fault within a TDR setup featuring a source–
cable impedance discontinuity. In this section, we derive the
full S-parameter model for an arbitrary cable type (supporting
a single mode of propagation) and with a generic fault, which
can be used in analyzing other types of measurements (e.g.,
time-domain transmissometry) as well.

Let us begin with the setup shown in Figure 6, which depicts
a fault with two sections of possibly lossy cable attached to
it. To derive theS-parameters for this faulty cable, the chain
scattering matrix approach is used [12]. With this approach,
the chain scattering matrixT for the faulty cable is readily
specified as

T =

[

(A21F21B21)
−1 −A−1

21 F22B21F
−1
21

A21F22B
−1
21 F−1

21 A21B21(F
2
21 − F 2

22)F
−1
21

]

,

whereAmn, Fmn, andBmn are theS-parameters for the first
section of cable, the fault, and the second section of cable,
respectively.2 Converting the chain scattering parameters back
to S-parameters, we get

S =

[

A2
21F22 A21F21B21

A21F21B21 F22B
2
21

]

. (24)

2For a coaxial cable with a chafe fault, the matricesA, B, andF are to
be constructed with theS-parametersS0, S11, andS21 derived earlier.

V +(ω, 0)

V −(ω, 0)

V +(ω, l)

V −(ω, l)

A, Z0 B, Z0F

Fig. 6. Block diagram of an arbitrary cable with fault.

Now that we have theS-parameters for the faulty cable,
the next step is to extend the formalism to include the source
and the load impedance discontinuities. The situation is shown
in Figure 7. TheS-parameters for the system inside the
impedance discontinuities are via:

b1 = S11a1 + S12a2,
b2 = S21a1 + S22a2,

(25)

whereSij are given in (24). The goal now is to derive the
S-matrix S for the extended system, which is defined by the
equations:

b1 = S11a1 + S12a2,

b2 = S21a1 + S22a2,

given we know theS-parameters for the faulty cable and all the
characteristic impedancesZ0, Z1, andZ2. To do this, we refer
to Figure 1 and make use of the following boundary conditions
(already derived in§II-B) for the voltage waves traveling into
and out of the impedance discontinuities on both sides of the
faulty cable:

a1 = (1 + Γ1)a1 − Γ1b1, a2 = (1− Γ2)a2 + Γ2b2,

b1 = (1− Γ1)b1 + Γ1a1, b2 = (1 + Γ2)b2 − Γ2a2.
(26)

To solve for theS-parameters of the extended system, we
start by solving equations (26) fora1, a2, b1, andb2 in terms
of a1, a2, b1, andb2. Next, these results are substituted into
equations (25), which are then solved for the elements of the
matrix S, obtaining:

S11 =
S11 + Γ1 − Γ1Γ2S22 − (S11S22 − S12S21)Γ2

1 + S11Γ1 − S22Γ2 − (S11S22 − S12S21)Γ1Γ2
(27)

S12 =
S12(1− Γ1)(1 − Γ2)

1 + S11Γ1 − S22Γ2 − (S11S22 − S12S21)Γ1Γ2
(28)

S21 =
S21(1 + Γ1)(1 + Γ2)

1 + S11Γ1 − S22Γ2 − (S11S22 − S12S21)Γ1Γ2
(29)

S22 =
S22 − Γ2 − Γ1Γ2S11 + (S11S22 − S12S21)Γ1

1 + S11Γ1 − S22Γ2 − (S11S22 − S12S21)Γ1Γ2
(30)

To verify the equation forS11, consider the case where
Γ2 = ΓL andΓ1 = 0. After substituting these values, equation
(27) becomes

S11 = S11 +
S12S21ΓL

1− S22ΓL
,

which is the same as equation (1) for the input reflection
coefficient given load impedanceZL and matched source
impedance (as it should be).

Use of the matrixS makes it easy to derive the in-
put/output voltage relationships with mismatched source and
load impedances. This case occurs frequently in practice when-
ever the wire impedance mismatches the source impedance.
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a1

b1 a2

b2a1

b1 a2

b2

Z1 Z0Z0 Z2

Γ1 = Z0−Z1
Z0+Z1

Γ2 = Z2−Z0
Z2+Z0

S

Fig. 7. Block diagram of a faulty cable attached to a source and a load.

Since the mismatch is now taken care ofwithin the S-
parameter block we can consider attaching the source and load
to matchedimpedances. This means we can simply write:

V +(0) =
1

2
VS (sinceZ1 = ZS)

V (0) = V +(0) + V −(0) =
1

2
(1 + S11)VS

V −(l) = 0 (sinceZ2 = ZL)

V (l) = V +(l) + V −(l) =
1

2
S21VS .

III. PROBABILISTIC INVERSION

A. Bayesian Framework

In this section, a probabilistic framework is presented for
inferring the fault parameters from measured TDR data. Start-
ing with a sampled version of (18), the measurement process
is modeled in the usual way as

y = vM (θ) + ν, (31)

where vM ∈ Rn is the discrete modeled TDR response
defined by equation (20), and calculated as a function of
the model parametersθ (and source interrogation signalvS)
using equation (23);ν ∈ Rn is a vector of additive random
measurement noise; andy ∈ Rn is the time series of voltage
samples forming the measured TDR signal.

Two probability distributions functions (pdfs) are now intro-
duced for the construction of a Bayesian inversion framework:
(1) theprior distributionPr(θ), which describes our state of
knowledge regarding the unknown model parameters before
any measurements are made, and (2) thelikelihood distribu-
tion Pr(y|θ), which specifies the probability of observing a
particular measurement for a given set of model parameters.
Bayes’ theorem then gives theposterior distribution forθ in
the form [15]

Pr(θ|y) = Pr(y|θ)Pr(θ)
∫

Pr(y|θ′)Pr(θ′) dθ′
. (32)

The maximuma posteriori estimateθ∗ is found by solving
the optimization problem

maximize Pr(θ|y). (33)

Furthermore, the shape of the posterior distribution around θ∗

indicates how confident we are in this estimate. There are two
typical approaches to quantifying the uncertainty represented
by a general distribution likePr(θ|y), which depends heavily
on the nonlinear forward model (among other things). The first
is to assume the distribution is approximately Gaussian around

the optimal estimateθ∗, and to use the inverse of the Hessian
of − logPr(θ∗|y) as an approximation for the covariance ma-
trix, which quantifies the spread of the distribution [15, Ch. 3].
The second approach relies on the remarkable fact that one can
sample random vectors directly from the posterior distribution
Pr(θ|y), and use a suitable measure of sample scatter to
quantify the spread of the distribution, without making any
additional Gaussian assumptions. This (more general) latter
approach is taken up in the next subsection.

B. Markov-Chain Monte Carlo Estimation

Finding the optimal estimate and quantifying the uncertainty
associated with it are computationally challenging tasks when
the forward modelvM (θ) is nonlinear inθ, as in the present
case. Furthermore, in cases where the forward model is
an algorithm (rather than a closed-form expression), it can
be prohibitively expensive to compute the gradient and the
Hessian of the cost function, which are needed to solve the
optimization problem (33) using traditional methods. Thus, a
natural approach for this type of problem is the application
of Markov-Chain Monte Carlo (MCMC) methods to obtain
a set of random samples drawn directly from the posterior
distribution, which are used to estimate the desired quantities
by applying the law of large numbers. The underlying premise
for this approach is that, for sufficiently largeN , a set of
samples

θk ∼ Pr(θ|y), k = 1, 2, . . . , N, (34)

adequately captures the essential features of the posterior
distribution. Specifically, the sampleθk that maximizes the
posterior distribution provides us with a globally optimal
estimate, while the spread of theN samples aroundθk may
be taken as a measure of our uncertainty about this estimate.
More generally, the law of large numbers guarantees that

1

N

N
∑

k=1

f(θk) → E[f(θ)] =

∫

f(θ)Pr(θ|y) dθ (35)

as N → ∞. Thus, the samples can be used to estimate the
expected value of almost any function ofθ. Standard examples
are the meanf(θ) = θ and the variancef(θ) = (θ −E [θ])2.

There are many different MCMC-based algorithms one
can implement to achieve the above sampling. The results
presented in§IV were obtained using a relatively new method
called nested sampling. This algorithm is a natural fit for
solving the estimation problem posed in (33), while also
estimating other relevant quantities such as the integral in the
denominator of (32), which does not influence the solution of
(33) but can be used for model selection (i.e., choosing the
best among competing forward-modeling schemes). A basic
summary of the nested sampling algorithm along with a few
key references are included in the appendix.

IV. RESULTS

This section presents a couple of example results on system
parameter estimation and chafing fault detection for a7-m
long RG58 coaxial cable with an open load condition (i.e.,
ZL = ∞), along with a simulated result highlighting the
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more complex nature of detecting particularly small faults.
Like many other MCMC methods, nested sampling also tends
to be slow: it took around 8-10 hours to solve the estimation
examples discussed below on a 32-bit 1.8-GHz Linux PC.

A. Problem Setup

Laboratory measurements were obtained using an Agilent
54754A digital TDR unit, which applies a0.4 V, 40 ps rise
time, step signal to the line. The elements of the measurement
noise vectorν were assumed to be independent and identically
distributed Gaussian random variables with zero mean and a
standard deviation ofσM = 0.5 mV, a value roughly equal
to the residual error standard deviation between the measured
data and the optimal model fit. Under these assumptions, the
likelihood distribution is

Pr(y|θ) = (2πσ2
M )−n/2 exp

{

− 1

2σM
‖y − vM (θ)‖2

}

,

(36)
whereθ = (l, dF , lF , wF , ǫd, σc, ZS, tM , G) is our vector of
key model parameters, all of which were carefully defined
throughout section II3.

The prior information is summarized in Table I, where
U(x, y) denotes the uniform distribution on the interval[x, y],
and N+(µ, σ) denotes the normal distribution restricted to
nonnegative values,4 with pdf

fX(x) =

{

e−(x−µ)/2σ2

Φ(µ/σ)
√
2πσ2

, x ≥ 0

0, otherwise
, (37)

whereΦ(z) = [1 + erf(z/
√
2)]/2 represents the cumulative

distribution function of a standard normal random variable.
This prior specification represents information and uncertainty
regarding the cable material properties and TDR equipment
specifications in areasonableway. For example, the nominal
values of σc and ǫd are typically supplied by the cable
manufacturer, but the parameters of aparticular cable may
deviate appreciably from the “batch” values, a fact captured by
the specified prior probability distributions; the same argument
holds for the TDR hardware parameters as well.

Before any measurements are made, our prior knowledge
of each key parameter is assumed independent of the other
parameters, except for the distance to faultdF and cable length
l, which are jointly distributed according to

Pr(dF , l) = Pr(dF |l)Pr(l) = U(0, l)×N+(7, 0.1). (38)

Thus, the pdf of the prior parameter vectorPr(θ) is simply
the product of the distributions listed in Table I. With the
likelihood and prior pdfs now defined, equation (32) provides
the posterior distribution. Note that, even though standard
likelihood and prior distributions were assumed, the nonlinear
nature of the forward modelvM (θ) makes the posterior distri-
bution nonstandard (i.e., not Gaussian, uniform, or any other
textbook distribution). In fact, the general posterior distribution

3In practice, the‖y − vM (θ)‖2 term in (36) is computed directly in the
frequency domain for eachθ and thus does not require the Fast Fourier
Transform operations specified in (23) for each evaluation.

4This is necessary to assure that the forward model is not evaluated with
non-physical values of its arguments during the Bayesian inference process.

TABLE I
PARAMETER PRIOR INFORMATION

Param. Distribution Description

l N+(7, 0.1) m cable length

dF U(0, l) m distance to fault

lF U(0, 50) mm fault length

wF U(0, 2b) mm fault width

ǫd N+(2.25, 0.2) relative dielectric permittivity

σc N+(3, 2) × 107 S/m core & shield conductivity

ZS N+(50, 2) Ω source impedance

tM N+(0.5, 0.2) ns measurement time delay

G N+(1, 0.1) system gain

TABLE II
PARAMETER ESTIMATES± 1 STANDARD DEVIATION

Param. Estimate Param. Estimate

dF 6.010± 0.034 m lF 14.5± 1.9 mm

wF 2.71± 0.10 mm ǫd 2.242 ± 0.025

σc 3.019± 0.008× 107 S/m ZS 48.9± 0.3 Ω

l 7.02± 0.04 m tM 0.552 ± 0.005 ns

G 0.991± 0.000

can be multi-modal, and this fact has important consequences
for fault detection. The final subsection provides an example.

B. Chafing Fault Detection Example

As an example, our estimation procedure is applied to the si-
multaneous retrieval of all parameters from a single measured
TDR response collected from a7-m long RG58 coaxial cable
with a single 10 mm× 3 mm chafe at a distance of 6 m from
the source.5 The optimal estimates are shown in Table II, along
with their corresponding standard deviations. Also, Figure 8
characterizes joint estimation performance between pairsof
parameters. Note that the correlation between fault width and
fault length is expected since changing these parameters in
the forward model has roughly the same effect on the TDR
response. The model also explains the very strong correlation
between the cable lengthl and dielectric permittivityǫd, since
both affect the total propagation time through the cable (i.e.,
ǫd affects propagation velocity).

Finally, with all the key model parameters inferred from
data, we now use the optimal parameter estimates and the
known source voltage profilevS(t) to compute the model-
predicted TDR signal,vM (t). The result presented in Figure 9
shows nearly perfect agreement with the laboratory measure-
ment, thus validating the accuracy of the forward model.

C. A Multi-modal Example

The example in the previous section highlighted a case
where the fault signature was small, but visible by eye. As

5Lab measurements were made using a tape measure for distanceto fault
and cable length, and digital calipers for fault length and width. These
measurements are all subject to some inaccuracy.
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Fig. 9. Model fit to the measured TDR signal using the optimal estimate for
θ. The fit captures the variation in the measured signal to within a standard
deviation of 0.43 mV, and includes both the primary and the secondary
reflections from the chafing fault.

shown in Figure 8, the posterior samples in that case are
well modeled by a multivariate Gaussian distribution; and
that is the standard treatment for a posterior distribution built
around general nonlinear models, as in the present case. This
approach, however, is not always appropriate. For example,
Figure 11 presents the posterior samples from asimulated
TDR response (again with measurement noiseσM = 0.5 mV),
to a 6 mm× 2 mm fault still located 6 m from the source.
In this case, the fault signature is buried in the measurement
noise (see Figure 10), and the estimation procedure yields
posterior samples that cluster around various possible fault
locations along the cable. Clearly, these samples are not
well described by a multivariate Gaussian distribution, sothe
standard approach would yield very misleading results. Thus,
we can conclude that the standard method is inaccurate for
assessing fault detectability at or near the limits of detection.

The MCMC parameter estimation approach presented in this
article naturally reveals the proper multi-modal distribution by
treating the full nonlinear model without further approxima-
tion. In this particular case, Figure 11 shows that the primary
mode of the distribution provides good estimates for the fault
location and length, but that is not known in advance. Given
the available measured data, prior information, and model,one
can conclude only that the most likely fault is at 6 m, but other

0 20 40 60 80 100 120 140 160

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

 

 

79 80 81 82
0.391

0.392

0.393

0.394

0.395

60.2 60.4 60.6 60.8 61 61.2 61.4

0.207

0.208

0.209

source

noisy measurement

actual model

primary chafe reflection

secondary chafe reflection

t ns

v
(t
)

V

Fig. 10. Actual model for the TDR response to a coaxial cable with a 6
mm × 2 mm fault, 6 m from the source, and simulated noisy measured data
(model plus zero mean Gaussian measurement noise withσM = 0.5 mV).
Even though the reflection signature is buried in noise, the maximum posterior
estimate correctly characterizes it to the extent shown in Figure 11.

locations are also somewhat probable. In fact, that is just what
the posterior samples provide: a set of probable parameter
values given the assumed model and measured data.

In closing, we emphasize these examples were selected to
highlight the advantages provided by our probabilistic inver-
sion approach using perhaps the simplest possiblerealistic
example: the detection of a single chafe in coaxial cable.
In other wiring types, particularly non-impedance controlled
wire, the situation becomes more complex because changes
in impedance, usually caused by changing distance between
conductors (or ground plane) with distance, lead to additional
reflections that can mask chafing faults, an effect discussed
in [3]. Our framework is adaptable to these cases by either
parameterizing the effect and thus absorbing it into the model,
or by developing a noise model to represent a random (and
hence unknowable) change in impedance with distance. While
the best way to actually accomplish this is an open research
area, the probabilistic inversion approach discussed in this
article would still rigorously characterize fault detectability (or
un-detectability) in these cases.

V. CONCLUSION

This article presented a composite forward model for the
TDR response of chafed coaxial cable, given the input signal
and a set of model parameters. The novelty in our approach
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lies not in the application of electromagnetics orS-parameter
based signal modeling, but in the identification of the impor-
tant model parameters and system structure needed to accu-
rately represent the actual hardware measured TDR response
in the simplest possible way. This was in fact the direct result
of a long process of trial and error with lab measured data
– a full description of which the reader has been spared.
The resulting model incorporates key practical effects such as
source–cable impedance mismatch, measurement delay, signal
loss and dispersion, changing cable characteristics, and even
some degree of mis-calibration. These issues are not specific
to the coaxial cable chafe fault detection example this article
focused on, and are all important to the general applicationof
TDR-based wiring fault detection methods in the field.

The forward model was then combined with a Bayesian
inversion framework to formulate and solve the problem
of optimal fault detection and performance characterization
using MCMC based techniques. Although this method is
computationally slow, it handles general nonlinear models
without further approximation; and this leads to an accurate
characterization of estimation uncertainty that most traditional
methods can fail to provide. Experimental and simulation
results highlighted this effect through two simple chafe fault
detection examples in coaxial cable. Furthermore, this method
is optimal in the sense that, given the measured TDR response,
no other detection method can find a more likely fault location
and size under equivalent conditions (i.e., same measurement
hardware, input signal, noise, wiring systemetc.).

Finally, the inversion approach is easily generalized to
handle a variety of parametric models, since the model itself
is viewed simply as an input to the inversion procedure. Thus,
we have presented a truly generalized framework applicable
to the characterization of TDR-based fault detection for a
large variety of TDR hardware, wiring types, and network
topologies.

APPENDIX

NESTEDSAMPLING

In this appendix we provide a brief summary of the nested
sampling algorithm. A complete description can be found in
[15], [16], and a more in depth mathematical analysis in [17].

Note, some of the material presented here is supplementary to
these references.

To begin, we define the likelihood superlevel setAλ = {θ :
Pr(y|θ) > λ} and associatedprior massfunction

ξ(λ) =

∫

θ∈Aλ

Pr(θ) dθ. (39)

Thus,ξ(λ) measures the amount of prior probability associated
with the likelihood superlevel setAλ.

Starting withn samplesθk, for k = 1, 2, . . . , n, from the
prior distribution restricted toAλ (i.e., θk ∼ Pr(θ) givenθ ∈
Aλ), the core nested sampling algorithm is:

1) Rejectθ∗ = argmink Pr(y|θk).
2) Setλ∗ = Pr(y|θ∗).
3) Sample one newθk ∼ Pr(θ) given θ ∈ Aλ∗ .

The output from this process is then the rejected sampleθ∗,
and a set ofn samples all in the new likelihood superlevel set
Aλ∗ ⊂ Aλ, since one always hasλ∗ > λ. Initializing λ to zero,
the above algorithm is then repeated until a stopping criterion
is met, say afterN iterations, andλ is updated toλ∗ after each
iteration. The net result is then a set of rejected samplesθ∗k
and corresponding likelihood valuesλ∗

k for k = 1, 2, . . . , N .
For the results presented in section§IV, we usedn = 300,
andN ≈ 23000, althoughN was determined by a stopping
criterion based on the numerical progress of the algorithm.

It also turns out [15, Ch. 9] that each rejected sampleθ∗k
corresponds to an unknown random amount of prior massξ∗k =
ξ(λ∗

k), but with known distribution, such that,

log ξ∗k =
−k ±

√
k

n
. (40)

Thus, on average, ξ∗k = e−k/n, and this provides an esti-
mate of the prior probability thatθ ∈ Aλ∗

k
. Now, the sets

Bk = Aλ∗

k
∩ Ac

λ∗

k+1
for k = 1, 2, . . . , N − 1, andBN = AλN

form a disjoint partition of the sample spaceA0. Thus, if the
likelihood functionPr(y|θ) is further assumed approximately
constant for all values ofθ in each of these sets6, one has the
following approximation for the evidence integral7,

Z =

∫

θ∈A0

Pr(y|θ)Pr(θ) dθ

≈
N
∑

k=1

Pr(y|θ∗k)
∫

θ∈Bk

Pr(θ) dθ

=

N
∑

k=1

Pr(y|θ∗k)Pr(θ ∈ Bk)

≈
N
∑

k=1

λ∗
khk,

wherehk = (ξ∗k−ξ∗k+1) ≈ Pr(θ ∈ Bk) for k = 1, 2, . . . , N−
1, andhN = ξ∗N .

At each iteration of the nested sampling algorithm it is
required to sample one new value from the prior distribu-
tion restricted to a likelihood superlevel set (i.e., step 3).

6In fact, for all θ in eachBk we have thatλ∗

k
< Pr(y|θ) ≤ λ∗

k+1
.

7The idea behind this method of calculating the evidence integral is a
numerical version of the same basic idea underlying Lebesgue’s theory of
integration.
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A variety of approaches are possible. The easiest way is
by rejection sampling: sample values fromPr(θ) until one
falls into the desired set. This approach however, becomes
extremely inefficient once the prior mass associated with the
likelihood superlevel sets becomes small (i.e., as the algorithm
proceeds the superlevel sets are progressively reduced, and so
is the associated prior mass). The approach we took was to
use then − 1 samples already available from the restricted
region to form a multivariate Gaussian proposal distribution
at each iteration (using the mean and covariance of then− 1
samples). The proposal distribution was then used to obtainthe
desired new sample using the Metropolis-Hastings algorithm
initialized to a sample selected randomly from then − 1
samples already available. Aburnin period was also used to
help enhance the independence of each new sample.

The final step is to obtain the posterior samples. So far, we
haveN samplesθ∗k each representing a region with posterior
mass(λ∗

khk)/Z, for k = 1, 2, . . . , N . Thus, resampling from
this collection ofweightedsamples according their posterior
masses will yield the desired set ofunweightedposterior
samples (i.e., samples that appear with the correct posterior
probability). Following [15,§9.4.2], one can accomplish this
in an efficient way that ensures no repeats in the final list of
posterior samples.
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